INDUSTRIAL ROBOTICS & APPLICATIONS (OPEN ELECTIVE – II)

Course Objectives:

- 1. To give students practice in applying their knowledge of mathematics, science, and Engineering and to expand this knowledge into the vast area of robotics.
- **2.** The students will be exposed to the concepts of robot kinematics, Dynamics, Trajectory planning.
- 3. Mathematical approach to explain how the robotic arm motion can be described.
- **4.** The students will understand the functioning of sensors and actuators.
- **5.** They will know the application and can explore possible applications of robot in future.

UNIT-I

INTRODUCTION: Automation and Robotics, CAD/CAM and Robotics – An over view of Robotics – present and future applications – classification by coordinate system and control system.

COMPONENTS OF THE INDUSTRIAL ROBOTICS: Function line diagram representation of robot arms, common types of arms. Components, Architecture, number of degrees of freedom – Requirements and challenges offend effectors, determination of the end effectors and comparison of Electric, Hydraulic and Pneumatic types of locomotion devices.

UNIT – II

MOTION ANALYSIS: Homogeneous transformations as applicable to rotation and translation – problems.

MANIPULATOR KINEMATICS: Specifications of matrices, D-H notation joint coordinates and world coordinates Forward and inverse kinematics –problems.

UNIT - III

Differential transformation and manipulators, Jacobians – problems Dynamics: Lagrange – Euler and Newton – Euler formulations – Problems.

IINIT IV

General considerations in path description and generation. Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion – straight line motion – Robot programming, languages and software packages-description of paths with a robot programming language.

UNIT V

ROBOT ACTUATORS AND FEED BACK COMPONENTS:

Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors. Feedback components: position sensors – potentiometers, resolvers, encoders– Velocity sensors.

ROBOT APPLICATIONS IN MANUFACTURING: Material Transfer -Material handling, loading and unloading- Processing - spot and continuous arc welding & spray painting - Defense, Disaster management. Applications, Micro and Nano-robots, Future Applications. - Assembly and Inspection.

TEXT BOOKS:

- 1. Industrial Robotics / Groover M P / Pearson Edu.
- 2. Robotics and Control / Mittal R K & Nagrath I J / TMH.

REFERENCES:

- 1. Robotics / Fu K S/ McGraw Hill.
- 2. Robotic Engineering / Richard D. Klafter, Prentice Hall.
- 3. Robot Analysis and Intelligence / Asada and Slow time / Wiley Inter Science.
- 4. Introduction to Robotics / John J Craig / Pearson Edu.

Course outcomes:

Upon successful completion of this course you should be able to:

- 1. Identify various robot configuration and components.
- 2. Select appropriate actuators and sensors for a robot based on specific application.
- 3. Carry out kinematic and dynamic analysis for simple serial kinematic chains.
- 4. Perform trajectory planning for a manipulator by avoiding obstacles.