L T P C 3 1 0 0

AIR POLLUTION AND CONTROL (Dept.Elective-I)

Course Learning Objectives

The course will address the following:

- 1. To know the analysis of air pollutants
- 2. To know the Threshold Limit Values (TLV) of various air pollutants
- 3. To acquire the design principles of particulate and gaseous control
- 4. To learn plume behaviour in different environmental conditions
- 5. To learn carbon credits for various day to day activities

Course Learning Outcomes

Upon successful completion of this course, the students will be able to

- 1. Decide the ambient air quality based on the analysis of air pollutants
- 2. Understands Thermodynamics and kinetics of air pollution
- 3. Design particulate and gaseous control measures for an industry
- 4. Judge the plume behaviour in a prevailing environmental condition
- 5. Estimate carbon credits for various day to day activities

SYLLABUS

UNIT – I

Air Pollution: Sampling and analysis of air pollutants, conversion of ppm into $\mu g/m3$. Definition of terms related to air pollution and control - secondary pollutants – Indoor air pollution – Ozone holes and Climate Change and its impact - Carbon Trade.

UNIT-II

Thermodynamics and Kinetics of Air-pollution: Applications in the removal of gases like SOx, NOx, CO and HC - Air-fuel ratio- Computation and Control of products of combustion, Automobile pollution. Odour pollution control, Flares.

UNIT – III

Meteorology and Air Pollution: Properties of atmosphere: Heat, Pressure, Wind forces, Moisture and relative Humidity, Lapse Rates - Influence of Terrain and Meteorological phenomena on plume behaviour and Air Quality - Wind rose diagrams and Isopleths Plume Rise Models

UNIT-IV

Ambient Air Quality Management: Monitoring of SPM - RPM SO2; NOx and CO - Stack Monitoring for flue gases - Micro-meteorological monitoring – Noise Monitoring - Weather Station. Emission Standards- Gaussian Model for Plume Dispersion

UNIT-V

Air Pollution Control: Control of particulates – Control at Sources, Process Changes, Equipment modifications, Design and operation of control Equipments – Settling Chambers, Cyclone separators – Fabric filters–Scrubbers, Electrostatic precipitators

$\mathbf{UNIT} - \mathbf{VI}$

Air Pollution Control Methods: Control of NOx and SOx emissions – Environmental friendly fuels - In-plant Control Measures, process changes, methods of removal and recycling. Environmental criteria for setting industries and green belts.

TextBooks:

- 1. Air PollutionandControl,K.V.S.G.MuraliKrishna,LaxmiPublications,NewDelhi, 2015
- 2. Air Pollution, M. N. Rao and H. V. N. Rao, TataMcGraw Hill Company.

References:

- 1. An Introduction to Air pollution, R. K. Trivedy and P.K. Goel, B.S. Publications.
- 2. Air Pollution by Wark and Warner-Harper & Row, New York.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	2	3	3	2	3	3	2	3	2	3	3
CO2	3	1	2	3	1	2	3	1	2	3	1	2	1	2	3
CO3	3	3	1	3	3	1	3	3	1	3	3	1	3	1	3
CO4	3	2	1	3	2	1	3	2	1	3	2	1	2	1	2
CO5	3	3	1	3	3	1	3	3	1	3	3	1	3	1	3
CO6	3	1	1	3	1	1	3	1	1	3	1	1	1	1	1