II Year II Semester	L	Т	Р	С
Code: 17CE412	0	0	3	2

FLUID MECHANICS AND HYDRAULIC MACHINERY LAB

Course Outcomes:

- 1. Determine the discharge of flow through venturimeter and orificemeter, loss of head due to sudden contraction and friction in pipe and verify bernoulli's equation
- 2. Determine Cd for a small orifice by constant Head method
- 3. Determine discharge of flow using V notch and Rectangular notch
- 4. Determine the force exerted by jet and study efficiency of Pelton wheel, francis turbine
- 5. Determine the efficiency of Centrifugal and reciprocating pumps List of Experiments
- 1. Calibration of Venturimeter& Orifice meter
- 2. Determination of Coefficient of discharge for a small orifice by a constant head method.
- 3. Determination of Coefficient of discharge for an external mouth piece by variable head method.
- 4. Calibration of contracted Rectangular Notch and /or Triangular Notch
- 5. Determination of Coefficient of loss of head in a sudden contraction and friction factor.
- 6. Verification of Bernoulli's equation.
- 7. Impact of jet on vanes
- 8. Study of Hydraulic jump.
- 9. Performance test on Pelton wheel turbine
- 10. Performance test on Francis turbine.
- 11. Efficiency test on centrifugal pump.
- 12. Efficiency test on reciprocating pump. List of Equipment:
- 1. Venturimeter setup.
- 2. Orifice meter setup.
- 3. Small orifice setup.
- 4. External mouthpiece setup.
- 5. Rectangular and Triangular notch setups.
- 6. Friction factor test setup.
- 7. Bernoulli's theorem setup.
- 8. Impact of jets.
- 9. Hydraulic jump test setup.
- 10. Pelton wheel and Francis turbines.
- 11. Centrifugal and Reciprocating pumps.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	-	-	-	-	-	-	I	-	-	1	3	-	2
CO2	3	2	3	-	-	-	-	-	-	-	-	3	3	-	2
CO3	3	2	-	-	-	-	-	-	-	-	-	1	3	-	2
CO4	3	2	3	-	-	-	-	-	-	-	-	1	3	-	2
CO5	3	2	3	-	-	-	-	-	-	-	-	1	3	-	2
CO6	3	2	3	-	-	-	-	-	-	-	-	1	3	-	2