DIGITAL LOGIC DESIGN

Course Objectives:

- 1. To introduce the basics of binary number system
- 2. To define Boolean theorems and simplification of Boolean expressions
- 3. To design and analyze different combinational logic circuits
- 4. To understand sequential logic circuits and design finite state machines
- 5. To learn basics of registers and counters

Course Outcomes:

A student who successfully fulfils this course requirement will be able to:

- 1. Discuss different number systems and binary operations.
- 2. Simplify logic functions using Boolean theorems and K-maps
- 3. Design and analyze combinational circuits and PLDs
- 4. Analyze and synthesize Finite State Machines
- 5. Construct registers and counters

UNIT-I: Digital Systems and Binary Numbers

Digital Systems, Binary Numbers, Number based Conversions, Octal & Hexadecimal Numbers, Complements – r's complement, (r-1)'s complement, Signed binary Numbers, Arithmetic addition and subtraction, Binary Codes, Binary Storage & Registers, Floating Point Representation.

UNIT-II: Concept of Boolean algebra and Gate Level Minimization

Basic Definitions, Axiomatic Definitions, Basic Theorems & Properties of Boolean algebra, Boolean Functions, Canonical and Standard Forms, Digital logic gates, The Map Method – Two-Variable, Three-Variable, Four-Variable K-Maps. Product of Sums Simplification, Sum of Products Simplification, Don't Care Conditions, NAND and NOR Implementation, Exclusive-OR Function

UNIT-III: Combinational Logic

Introduction, Analysis Procedure, Design Procedure – Code Converters, Binary Adder–Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers, Boolean Function Implementation using Decoders and Multiplexers, **Programmable Logic Devices:** Read only Memory, Programmable Logic Array, Programmable Array Logic.

UNIT-IV: Sequential Logic

Introduction to Sequential Circuits, Latches, Flip-Flops, Analysis of Clocked Sequential Circuits, Mealy and Moore Models of Finite State Machines, Synthesis of Sequential Circuits, State reduction and State Assignment, Design Procedure.

UNIT-V: Registers and Counters

Registers, Shift Registers, Universal Shift register, Ripple Counters – Binary Ripple counter, BCDripple counter, Synchronous Counters – Binary counter, Up-down Counter, BCD counter. Counters with unused states, Ring Counter, Johnson Counter

Correlation of COs with POs & PSOs:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂	PSO3
CO 1	1	1	-	-	-	-	-	-	-	-	-	-	1	-	-
CO 2	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
CO 3	-	2	1	-	-	-	-	-	-	-	-	-	3	-	1
CO 4	-	3	2	-	-	-	-	-	-	-	-	-	2	-	1
CO 5	-	2	2	-	•	-	•	-	-	-	-	-	3	-	1

Text Books:

- 1. Digital Design M.Morris Mano, Michael D Ciletti, 5th ed., PEA.
- 2. Digital Electronics: Principles, Devices & Applications Anil K. Maini, Wiley.

Reference Books:

- 1. Digital Logic and Computer Design M.Morris Mano, PEA.
- 2. Digital Principles and Applications Leach, Malvino & Saha, 6th ed., McGraw Hill.
- 3. Modern Digital Electronics R.P. Jain, TMH
- 4. An Engineering approach to Digital Design William I Fletcher, PHI.