II Year II Semester	L	Т	Р	С
Code: 20EE4636	4	0	0	4
NON-LINEAR CONTROL SYSTEM	MS			

Preamble: Most systems are nonlinear, and therefore, it is of general interest to investigate possible behaviours of nonlinear systems, investigate their stability, and to design control schemes.

Course Objectives: At the end of the course, the students are supposed

- 1. To introduce the need and concept of nonlinear system.
- 2. To impart knowledge about different strategies adopted in the analysis of nonlinear systems.
- 3. To analyse the stability of nonlinear systems using various approaches.
- 4. To familiarize with the design of different types of nonlinear controllers.

Course Outcomes: At the end of the course, the students can able to

- 1. demonstrate non-linear system behaviour by phase plane and describing function methods
- 2. perform the stability analysis nonlinear systems by Lyapunov method
- 3. analyse the application of Lyapunov function and its control
- 4. design a controller to the nonlinear system either through direct approach or by linearization of the states.

PO& PSOs	Program Outcomes (POs)									PSOs					
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2					1						2	3	
CO2	3	2					1						2	3	
CO3	3	2					1						2	3	
CO4		3	2	1									2	3	

^{*}Mapping Strength: **Strong-3; Moderate-2; Low-1**

Unit – I: Introduction and Phase Plane Analysis

Introduction. Linear vs. nonlinear systems and nonlinear phenomena. State-space representation of nonlinear systems, Basic characteristics of nonlinear systems. Second Order Systems (Phase plane analysis): Classification of equilibrium points. Systems with multiple equilibria. Analysis of piecewise linear control systems-Feedback systems in standard form-Classification of nonlinearities.

RAGHU ENGINEERING COLLEGE (Autonomous)

Unit – II: Describing function analysis

Describing function analysis-The principle of harmonic balance. Describing functions for various nonlinearities. Stability of limit cycles by describing function method. Limit cycle analysis of control systems. Nonlinear differential equations-Existence and uniqueness

Unit – III: Lyapunov Stability Theory

Mathematical preliminaries-Linear vector spaces-Norms and inner products-Normed and inner product spaces. Lyapunov's direct method-Definite functions-Stability and instability theorems. La Salle theorems. Stability of linear systems-Lyapunov equation for time-invariant systems-Stability conditions for time varying systems. Lyapunov's linearization (indirect) method. Region of attraction

Unit – IV: Application of Lyapunov Theory

Input-Output stability-Relationships Between I/O and Lyapunov Stability.Passivity Theorem, The Small-Gain Theorem, Feedback Stability: Absolute Stability (Lure) problem-Circle criterion-Popov's criterion. Passivity-Based control, Control Lyapunov functions.

Unit – V: Nonlinear Control Design and Feedback Linearization

Nonlinear Control Design Methods-Sliding Mode Control-Robust Control of Nonlinear Systems-Backstepping. Feedback Linearization-Lie derivatives and Lie brackets-Input-state linearization of SISO systems-Input-output linearization of SISO systems.

Text Books:

- 1. H. K. Khalil Nonlinear Systems, Third Edition, Prentice-Hall., 2002
- 2. S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer 1999.
- 3. K.M. Hangos, J. Bokor and G. Szederkényi, "Analysis and Control of Nonlinear Process Systems", Springer ISBN 1-85233-600-5

Reference Books:

- 1. H. J. Marquez, Nonlinear Control Systems: Analysis and Design, JohnWiley Inter science, 2003.
- 2. J. J. Slotine and W. Li Applied Nonlinear Control, Prentice-Hall, 1991.
- 3. M. Vidyasagar, Nonlinear Systems Analysis, SIAM, 2002
- 4. J. E. Gibson Nonlinear Automatic Control, McGraw-Hill, 1963.