II Year I	Semester
-----------	----------

Code: 20EE3003

ELECTRO MAGNETIC FIELD THEORY

Preamble: The purpose of this course is to understand and interpret the phenomenon pertinent to electrical engineering using electric and magnetic intensities.

Course Objectives

- 1. To understand and analyze the concepts of Coulombs Law, Gauss's law and Electric filed intensity
- 2. To understand the concept of capacitance.
- 3. To understand and analyze the concepts of Biot-Savart's law, Ampere's circuit law
- 4. To understand and analyze the concepts of Lorenz force equation, self and mutual inductances.
- 5. To understand the concepts of Faraday's laws, poynting theorem and Maxwell's equations for time varying fields.

Course Outcomes

- 1. Able to state and apply the Coulombs Law and Gauss's law and Calculate electric field and potentials using gauss's law
- 2. Able to compute capacitance of different configurations and to analyze the behaviour of dielectrics at different boundary conditions.
- 3. Able to state and apply the Biot-Savart law and Ampere's circuit law to calculate magnetic field intensity.
- 4. Able to Evaluate the magnetic force and dipole moment in magnetic field and analyze the self and mutual inductances and energy densities in a magnetic field.
- 5. Able to Evaluate pointing vector and Maxwell's equation for time varying fields.

						• •									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	-	-	-	1	-	-	-	-	1	1	1	-
CO2	2	3	-	-	-	-	1	-	-	-	-	1	1	1	-
CO3	3	3	-	-	-	-	1	-	-	-	-	1	1	1	-
CO4	2	3	_	_	-	-	1	-	-	-	_	1	1	1	-
CO5	3	3	-	-	-	-	1	-	-	-	-	1	1	1	-

CO – PO & CO – PSO Mapping:

1 - Weak, 2 - Moderate and 3 - Strong

RAGHU ENGINEERING COLLEGE (Autonomous)

С

3

L

3

Т

0

Р

0

Unit – I: Static Electric fields and its applications

Types of charge distributions. Line, surface and volume integrals, - Coulomb's law- Electric field intensity- Electric field intensity due to a line and a surface charge-, Gauss' law-Maxwell's first equation in integral and point form, Divergence and curl of electrostatic field - - Applications of Gauss' law-.

Unit – II: Conductors, Dielectrics and Capacitors

Electric potential- properties of potential function and potential gradient, Current densityconduction and convection current density- Ohm's law in point form- continuity equationconductors and dielectric material- behavior of conductors in an electric field- boundary conditions-polarization-Electric dipole, Potential and torque due to electric dipole- capacitancecapacitance of parallel plate, spherical and co-axial capacitors, composite dielectrics. Energy stored and density static electric field- Laplace and Poisson's equations.

Unit – III: Steady State Magnetic Fields

Biot-savart's law, Magnetic field intensity (MFI)- MFI due to a straight current carrying filament, circular, square and solenoid. Relation between magnetic flux, magnetic flux density and MFI- Maxwell's second equation div(B)=0- Ampere's circuital law. MFI due to infinite sheet of current and a long current carrying filament, circular loop, rectangular loop, and square loop. Stokes's theorem -point form of Ampere's circuital law- Maxwell's third equation curl(H)=J.

Unit – IV: Magnetically Coupled Circuits and Inductance

Magnetic force, Lorentz's force equation- Force on long current carrying conductor in a magnetic field- force between two straight, long and parallel current carrying conductorsmagnetic dipole and dipole moment-Torque on current loop placed in a magnetic field- self and mutual inductance of a solenoid, toroid, co-axial cable. Energy stored and density in a magnetic field.

Unit – V: Time varying Electromagnetic fields

Time varying fields, Modification of Ampere's law, - Faraday's laws of electromagnetic induction-Integral and point forms- Maxwell's fourth equation. Modification of Maxwell's equation for time varying fields, Numerical problems. Poynting theorem and Poynting vector.

Text Books:

- 1. Engineering Electromagnetics, W.H. Hayt Jr. McGraw Hill New York .
- 2. Elements of Electromagnetics, M.N.O. Sadiku, Oxford press, 2002.
- 3. Introduction to Electro-dynamics, David J.Griffiths, PHI.

Reference Books:

- 1. EM Waves and Radiating Systems, E.C. Jordan, PHI, 1997.
- 2. Electromagnetics with applications, Kraus and Fleisch, McGraw Hill, 1999
- 3. Nathan Ida: Engg. Electromagnetics, Springer 2nd Edition, 2005

RAGHU ENGINEERING COLLEGE (Autonomous)

10 Hours

10 Hours

10 Hours

15 Hours

15 Hours